On the Approximation Ability of Evolutionary Optimization with Application to Minimum Set Cover: Extended Abstract
نویسندگان
چکیده
Evolutionary algorithms (EAs) are a large family of heuristic optimization algorithms inspired by natural phenomena, and are often used in practice to obtain satisficing instead of optimal solutions. In this work, we investigate a largely underexplored issue: the approximation performance of EAs in terms of how close the obtained solution is to an optimal solution. We study an EA framework named simple EA with isolated population (SEIP) that can be implemented as a singleor multi-objective EA. We present general approximation results of SEIP, and specifically on the minimum set cover problem, we find that SEIP achieves the currently bestachievable approximation ratio. Moreover, on an instance class of the k-set cover problem, we disclose how SEIP can overcome the difficulty that limits the greedy algorithm.
منابع مشابه
On the approximation ability of evolutionary optimization with application to minimum set cover
Evolutionary algorithms (EAs) are heuristic algorithms inspired by natural evolution. They are often used to obtain satisficing solutions in practice. In this paper, we investigate a largely underexplored issue: the approximation performance of EAs in terms of how close the solution obtained is to an optimal solution. We study an EA framework named simple EA with isolated population (SEIP) that...
متن کاملA MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS
This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...
متن کاملAn Extended Compact Genetic Algorithm for Milk Run Problem with Time Windows and Inventory Uncertainty
In this paper, we introduce a model to optimization of milk run system that is one of VRP problem with time window and uncertainty in inventory. This approach led to the routes with minimum cost of transportation while satisfying all inventory in a given bounded set of uncertainty .The problem is formulated as a robust optimization problem. Since the resulted problem illustrates that grows up ...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملAutomatic QoS-aware Web Services Composition based on Set-Cover Problem
By definition, web-services composition works on developing merely optimum coordination among a number of available web-services to provide a new composed web-service intended to satisfy some users requirements for which a single web service is not (good) enough. In this article, the formulation of the automatic web-services composition is proposed as several set-cover problems and an approxima...
متن کامل